

Comit Systems, Inc. Newsletter Volume 4 Number 3 May - Jun 2001

Recursive VHDL structures in FPGA synthesis
By Rangarajan Sundaravaradan

New standards in VHDL-93 permit the writing of VHDL
components that instantiate themselves. Implementation
of recursive structures leads to designs easily pipelined
by the addition of registers at the outputs of the
recursively instantiated components. In general, the
recursive structures are easier to develop and can be
expressed clearly, making them easier to understand.
This article explores practical applications of recursive
structures in FPGA synthesis.

Most hardware structures that are designed consist of a
number of instances of a basic component interconnected
in a regular pattern. In order to describe such repetitive
structures, VHDL provides a mechanism called the
generate statement. The language permits both
conditional and repetitive forms of generate statement. A
recursive structure is one, which is parameterized with
respect to its size and is described in terms of smaller
instances of the same structure. The examples in this
article cover recursion using subprograms and entities.

The Wide XOR component

XOR component using a simple function:

library IEEE;
use IEEE.std_logic_1164.all;
entity XOR_reduce is
 generic (N: natural := 5);
 port (data_in: in std_logic_vector(N-1
downto 0);
 data_out: out std_logic);
end XOR_reduce;
architecture one of XOR_reduce is
 function
XOR_reduce_func(data:std_logic_vector)retu
rn std_logic is
 variable result : std_logic;
 begin
 result := ’0’;
 for I in data’RANGE loop
 result := result XOR data(I);
 end loop;
 return result;
end;
begin
 data_out <= XOR_reduce_func(data_in);
end one;

XOR component using a recursive function:

library IEEE;
use IEEE.std_logic_1164.all;

entity XOR_tree is
 generic (N: natural := 4);
 port (data_in: in std_logic_vector(N
downto 0);
 data_out: out std_logic);

Chips Boards Software Systems

end XOR_tree;
architecture one of XOR_tree is
 function XOR_tree_func(data:
std_logic_vector) return std_logic is
 variable UPPER_TREE, LOWER_TREE: std_logic;
 variable MID, LEN: natural;
 variable result: std_logic;
 variable i_data:
std_logic_vector(data’LENGTH-1 downto 0);
begin
 i_data := data;
 LEN := i_data’LENGTH;
 if LEN = 1 then
 result := i_data(i_data’LEFT);
 elsif LEN = 2 then
 result := i_data(i_data’LEFT) XOR
i_data(i_data’RIGHT);
 else
 MID := (LEN + 1)/2 + i_data’RIGHT;
 UPPER_TREE :=
XOR_tree_func(i_data(i_data’LEFT downto MID));
 LOWER_TREE := XOR_tree_func(i_data(MID-
1 downto i_data’RIGHT));
 result := UPPER_TREE XOR LOWER_TREE;
 end if;
 return result;
end;
begin
 data_out <= XOR_tree_func(data_in);
end one;

Wide XOR using recursive components:
In this example the different levels of logic are pipelined.

 entity xor_gate is
 generic(pipeline_delay:natural:=0 ;);
 port (X : in std_logic_vector ;
 q : out std_logic ;
 clk : in std_logic ;
 enable : in std_logic
) ;
 end xor_gate ;
architecture xor_gate_a of xor_gate is
begin

a: if X’length < N generate

--basic Xor gate component is instantiated
here

 end generate a;

b: if X’length > N generate
constant Y: natural := (X’length –1)/N ;
signal temp : std_logic_vector(0 to Y);

begin
 C : for I in 0 to Y-1 generate
 D: entity xor_gate generic map
(pipeline_delay => pipeline_delay)
 Port map (X => X(N*I to (N*(I+1) –1)),q
=> temp(i) ,

lk lk bl

®

esignesign dvantagedvantage

TMTM

DESIGN ADVANTAGE

-- Now for the end input bits
 E : entity xor_gate generic map
(pipeline_delay => pipeline_delay)
 Port map (X => X(N*Y to X’length
–1),q => tmp(Y),
 Clk => clk
,enable => enable);
 F : entity xor_gate generic map
(pipeline_delay => pipeline_delay)
 Port map (X => temp ,q => q
,clk=> clk ,enable => enable);

 End generate b;

End xor_gate_a ;

In the above case the basic instance is parameterized to
size N bits.

Wide XOR component targeted for ORCA2

Implementing the basic instance of the wide XOR component
targeted to a Lucent ORCA@ device:

Each PFU in ORCA2 uses three input data buses (A[4:0], B[4:0],
WD[3:0]), four control inputs (C0, CK, CE, LSR), and a carry input
(CIN); the last is used for fast arithmetic functions. There is a 5-bit
output bus (O[4:0]) and a carry-out (COUT) from the PFU.

A(4:0) and B(4:0) are inputs to the lookup table and WD(4:0) are
direct inputs to the flipflops.

Basic XOR gate instance can be constructed upto 11 bits in width
using a(4:0),b(4:0) and the carry input(CIN).A single PFU can
implement XOR gate upto 11 bits with 0 or 1 cycle of clock delay.

Construction of larger XOR functions require another component
which instantiates the base 11 bit XOR gate as shown in the
example above.

All trade names are trademarks of their respective vendors.

® The COMIT logo and Design Advantage are registered trademarks of Comit Systems, Inc. Other Service Marks labeled as such.
© Copyright Comit Systems, Inc. 2001. All rights reserved.

The advantages with recursion are

• The component is broken into different levels
of logic; pipelining the individual stages is
easier.

• Timing can be improved by adopting
recursive structures.

• Recursive structures are easier to develop.
• High performance in terms of speed and area

can be achieved by adjusting the base
component to fit the target architecture.

References.

1. Designer’s Guide to VHDL – Peter J. Ashenden
2. Recursive and Repetitive Hardware Models in VHDL – Peter

J. Ashenden
3. Vector Pipeline Library manual – John McCluskey.

COMIT SYSTEMS ANNOUNCES FISCAL 2000 RESULTS

 SANTA CLARA, Calif.--April 9, 2001-- Comit
Systems announced its results for Fiscal 2000 ending Dec. 31,
today. Revenue was up 36% to $6.21M ($4.55M). Net income
was up 155% to $560K ($220K), basic EPS being 16.5 cents (6.5
cents) and fully diluted EPS 12.7 cents (4.8 cents).

R. Vijayaraghavan, CEO of Comit Systems, said, "Our unique
strategic positioning as the contract engineering company is the
engine driving our success. This financial performance is an
evidence of that.”

Check us out at DAC
 in Las Vegas, June 18-20. Booth 117-118

