

esignesign dvantagedvantage
TMTM

Comit Systems, Inc. Newsletter Volume 3 Number 3 May – Jun. 2000

Supercharging Your Simulation with a Verilog-Tcl Bridge
Clever coding can enhance your design options and speed up time to completion.

By Venkat Iyer

 Chips Boards Software Systems Comit Systems is HIRING. www.comit.com/careers

Listing 1

s_tfcell veriusertfs[] =
{
 { usertask, 0, 0, 0, tcleval, 0, "$tcleval", 0 },
 {0} /*** final entry must be 0 ***/
};

A set of commands, translating to Verilog, are added to Tcl, and

are defined in the interpreter at initialization time (see Listing 2). Each C
routine uses PLI routines to translate the Tcl command for the Verilog
simulator. As many routines as needed may be added from the Verilog
PLI. We use a simple subset for this task (see table, below).

Listing 2

void tcleval()
{
 static Tcl_Interp *my_interp;
 char *cmd;

 if (my_interp == NULL)
 {
 my_interp = Tcl_CreateInterp();

 all tcl init, tk init and application init....

 if (Tcl_CreateObjCommand(my_interp, "verprint", verprint,
 NULL, NULL) == NULL)
 {
 tf_error("Couldn't add command verprint");
 return;
 }
 add commands verputp, vergetp, vertime, verprint
 }
 if (tf_nump() < 1)
 {

 tf_error("$tcleval requires at least one string"
 "arg for the command");
 return;
 }

 if (tf_typep(1) != tf_string)
 {
 tf_error("First argument to tcleval must be a string");
 return;
 }
 cmd = acc_fetch_tfarg_str(1);
 if (Tcl_Eval(my_interp, cmd) != TCL_OK)
 {

 tf_error("tcleval error found\n, %s\n",
 Tcl_GetVar(my_interp, "errorInfo",
TCL_GLOBAL_ONLY));
 Tcl_ResetResult(my_interp);
 }
}
Routine
Name

Routine Description

Verprint Use io_print to print a string so that the message will show up in the
simulator logs as well as the standard output

Vertime The current simulation time (this ignores the high 32 bits)
Verputp Use tf_putp to put a value to one of the parameters to this routine
Vergetp Use tf_getp to get the value of one of the parameters to this function

Commands are added to the simulator at Tcl initialization, in the
tcleval function. The command vergetp (see Listing 3) due to the use of Tcl
objects and error checking, looks quite complex.

Integrating a scripting language into your simulation
environment adds tremendously to testing functionality by providing
a mechanism to observe actual output, and not just waveforms. Tcl
is an extension scripting language that can be integrated with
Verilog, forming a Verilog-Tcl bridge, providing access to your
design in a standardized Verilog simulation environment. A “Tcl’ed”
Verilog, requires significantly less effort to design, build and deploy
than with a language like C.

Dynamic Testing: Without changing your Verilog, Tcl
provides a way of doing configurable testing. Tcl’s interpreter lets
you process files generated by other flows, redefine procedures,
unload packages and reload new ones. You can often build a
professional-looking user interface within a day, with Tk. Tk delivers
an accurate feel of the simulation, because the user is able to sit at
the simulation and control it manually. For example, when testing
your PCI target, you write a PCI-transaction dialog-box in Tcl, which
allows you to do various PCI bus operations (with options). You
could then click on the operations and see any of the results
immediately.

A Verilog-Tcl bridge is necessary for each platform that
you use. This allows you to use all of your Tcl scripts, unmodified, in
all of those simulation environments. It is not necessary to rebuild
the executable or recompile your Tcl scripts: since it works on the
post-implementation Verilog, the bridge isn’t specific to an FPGA
vendor. This type of bridge has been used successfully with
designs targeting various FPGA vendors, including Xilinx and
Altera.

If a vendor’s tool already has Tcl built into it, an interface
Verilog XL might be necessary. Since Tcl and the programming
language interface (PLI) in Verilog are both targeted towards C, C is
the obvious choice for building this Verilog-Tcl bridge. Typically we
use the most basic level of simulation interaction intially,and then
build higher-level layers. Performance is usually not an issue— the
bottleneck is usually the simulator. Though the compilation and
linking options are radically different between simulators, the
general idea is the same.

Issues with Tcl and Verilog: When builidng a simple,
low-level Tcl application-programming interface (API), the main
issues generally center around the control flow. As Verilog XL
defines main and you can’t override it, you need to do the Tcl/Tk
initialization at a different time in the flow. There are two ways to
handle initialization issues. The easier process is to check in all of
the Tcl PLI calls and then do the initialization, if it hasn’t as yet
happened. Tcl doesn't yet (as of V 8.3) support threads very well
(especially Tk), so the Tcl interpreter as well as the Verilog
simulator need to be run in the same thread. This means that you
have to find a way to keep the user interface interactive while letting
the simulation run. In your simulation, you will need to call the Tcl
update command often— the point at which the GUI commands are
recognized and the GUI is refreshed.

The PLI: Verilog calls Tcl functions via the PLI. With
Verilog XL, you need to first write up the veriuser.c (see Listing 1).
Tcl provides a command eval, which can call any other command.
We define one PLI task called tcleval, which will allow us to do
anything inside tcleval as a C function. This function takes one
string as the first parameter and passes it to the Tcl interpreter.
Other parameters can be passed too; accessible through the PLI
routines.

DESIGN ADVANTAGE

All tool names are trademarks of their respective vendors.
® Verilog® is a registered trademark of Cadence Design Systems, Inc.
® The COMIT logo is a registered trademark of Comit Systems, Inc. Other Service Marks labeled as such.
© Copyright Comit Systems, Inc. 2000. All rights reserved. We build them for YOU SM Now Hiring. Check out www.comit.com/careers

Listing 3

int vergetp(ClientData cd, Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[])
{
 int i;

 if (objc != 2)
 {
 return setTclError(interp, "%s takes exactly only one integer "
 "as the parameter to get the value of.",
 Tcl_GetString(objv[0]));
 }
 if (Tcl_GetIntFromObj(interp, objv[1], &i) != TCL_OK)
 return TCL_ERROR;
 else
 {
 Tcl_Obj *io = Tcl_NewIntObj(tf_getp(i));
 if (!io)
 return setTclError(interp, "Couldn't create object "
 "for int return");
 Tcl_SetObjResult(interp, io);
 return TCL_OK;
 }
}

You would write all your design specific Tcl code in one file or
a set of files (see Listing 4).

Listing 4

 initial begin
 $tcleval("source counter_tb.tcl");
 end

Then you could call $tcleval anytime to do your tcl tasks. For
example, in the code shown here, the counter_tb.tcl had one proc
clockedge defined that incremented the second parameter passed in
(see Listing 5).

Listing 5

 integer i;
 reg clk;
 always @(clk)
 begin
 $tcleval("clockedge", clk, i);
 $tcleval("update");
 end

The first argument to $tcleval is the name of the procedure,
the parameters that follow are just signal names that Tcl will access as
described in the next section. If you have a Tk GUI built, then make sure
you call update or the GUI won’t display correctly and won’t respond.
(see Listing 6).

A procedure that was defined in the file sourced above (see
Listing 5), counter_tb.tcl is enacted prior to the procedure named
“clockedge” (see Listing 6). The important things to note are that vergetp
uses numbers starting from 2, because parameter 1 will be the script
passed in Verilog to $tcleval. You can still use the standard Tcl puts to
print things onto the screen, but remember that this will not go into the
simulation log. Use verprint where possible.

Listing 6

proc clockedge {} {
 set clk [vergetp 2]
 set i [vergetp 3]
 verprint "Clock is $clk and i is $i at time [vertime]"
 incr i
 verputp 3 $i
}

A Sample Application: We used an application that
involved designing a real-time video-processing chip with an RGB
input and an RGB output. The true test of the chip was to see the
input image and the output image simultaneously, and to monitor
whether the chip was processing correctly. The simulation was
taking a long time to run, so the user wanted to be able to see the
output image as it was being generated, and to debug the image by
simultaneously zooming to various parts of the image, visualizing
pixel values, or other parameters.

Building a Verilog-Tcl bridge allowed the passing of data
from the Verilog simulation to Tk, where it was displayed on the
screen and updated pixel-by-pixel as the simulation proceeded. You
could also control the simulation by either pausing or quitting it
directly from the GUI (which also displayed the current time).
Additionally, to use this with your FPGA design, use the FPGA
vendor's tool to generate Verilog for the implemented FPGA design
and, finally, use Verilog-XL with the bridge to exercise the design.

The source code of the Verilog-Tcl bridge, along with

building instructions, is downloadable free of charge for a limited time
at www.comit.com. Check under FREE STUFF.

