

Volume 2, Number 2 MAY 1999

Modeling arbitrarily large memories in VHDL
By Vijay A. Nebhrajani

The newsletter of Comit Systems, Inc.

esignesign dvantagedvantage
TMTM

Modeling large memories is a tradeoff. On the one hand, if
you model the memory as an array, you statically allocate
at least that much memory on the host machine. On the
other hand, if you choose to model only part of the memory,
leaving the other address lines not connected, you perform
a partial simulation on your system. Neither solution pro-
vides the flexibility of a create-on-demand memory that is
described below.

The create-on-demand memory works on the following prin-
ciple: Whenever there is a write to the memory, it appends
to an underlying linked list. The linked list stores both the
address and the data that were supplied. Reading is per-
formed by scanning the list till an address match occurs. If
no address match occurs, an X is returned. This has the
advantage that you allocate only as much computer mem-
ory as you really need.

This method is not without its disadvantages, though. As-
sume that you did use the entire memory for simulation - in
that case, the linked list is likely to consume more computer
memory than a simple array. Further, as the list length in-
creases, the real time required for searching the list in-
creases. The real time problem can be reduced by sorting
and storing, using a binary search, or by using hashing
functions.

Even with this, the memory consumption problem does not
go away. A partial solution is possible if you know before-
hand that the address and data will not exceed 32 bits. If
so, you can choose to store the address and data as inte-
gers; this is cheaper than storing std_logic_vectors. As-
suming MVL9, each bit in a std_logic_vector would require
4 bits in real memory to store. If the simulator is efficient,
32 address lines would require 16 bytes of real memory. If
you stored it as an integer however, 32 bits would require
only 4 bytes. The address and a pointer to the next element
in the list would require another 4 + 4 = 8 bytes. Thus, a
total of 12 bytes per structural element are required, in lieu
of 16 per array element. This is certainly cheaper, but of
course, there would be the computational overhead of con-
version between std_logic_vector and integer for every read
and write.

You can choose to make your own tradeoffs when you
make models using linked lists. The good news is that
these tradeoffs can result in a faster, more resource-
efficient model.

Either way you choose, you will need to build a linked list in
VHDL to be able to successfully model the memory
without the penalties described above. A simple linked

list based memory package: ’mempkg.vhd’,
written in VHDL 93 is available at the Comit
Systems website for free download
(www.comit.com). A VHDL memory model,
1 Meg locations x 32 bits wide, that uses
mempkg is also provided. The test bench and asso-
ciated vectors file is also available at the same location as a
ready to use bundle. The memory package defines the linked
list and write and read functions for the memory. You can
choose to build whatever memory you want around this; the
package does not impose restrictions about whether you
want to model an SRAM or DRAM or FIFO, or any other kind
of memory element.

Details on compiling, running and using mempkg are avail-
able on the website in a README file.

Scripting Java

By Vivek Popli & Dinesh Monga

TCL is a very powerful, flexible, un-typed, high level scripting
language. By providing an interpreter and a UI builder, TCL
simplifies integration of components with a uniform interface
and provides a rapid application development environment.
TCL is used to 'glue' together components to make larger
applications.

But TCL is not a solution in itself, as it does not provide fa-
cilities to efficiently generate and process large data struc-
tures and doesn't scale well to complex algorithms.

Traditionally TCL has been used widely with C/C++ for appli-
cation development in EDA industry. This interface is not
100% platform independent, requiring porting, builds and
release on multiple platforms.

Comit realizes that to simplify software development man-
agement and usage, a truly platform independent solution is
essential

Java with its platform-independent features makes an ideal
partner with TCL. This next generation programming lan-
guage has large collections of programming APIs and tech-
nologies. It has built in safety checking, complex data struc-
tures and is ideal for building components from scratch.

Java Command Language (Jacl) is a scripting language that
combines the power of both TCL and Java. It is designed to
glue together Java components using TCL like syntax. Jacl

is a pure 100% Java implementation of the TCL command

 Comit now designs AMBA
compliant interfaces for on-

chip digital peripherals!

 FREE!
Download

Design Advantage

Comit Systems, Inc.
3375 Scott Blvd. Suite 330
Santa Clara, CA 95054
Phone : (408)-988-7966

The newsletter of:

S Y S T E M S

COMIT
®

esignesign dvantagedvantage

TMTM

 Editor : Jaishankar Iyer
We welcome your comments and
suggestions. Please email us at

jiyer@comit.com

language that allows users to interact with the Java Virtual
Machine. By adding scripting capabilities to Java applica-
tions, Java developers can add a great deal of power, flexi-
bility and end user customization capability to their Java
applications. . Users can load Java classes, create new
instances of Java classes, and access public members of
Java objects. Jacl allows users to write portable Java ex-
tensions.

Applications for Jacl are limitless e.g GUI development,
CGI scripting, small application development. An example
to illustrate the use of Jacl for GUI development is shown
below. This demonstrates the advantage of using JACL
over plain Java.

 # Create a top level frame to hold menu bar
set frame [java::new java.awt.Frame "Jacl Demo"]

Create the menu bar
set menuBar [java::new java.awt.MenuBar]
$frame setMenuBar $menuBar

Create the 'File' menu and add items to it
set fileMenu [java::new java.awt.Menu "File"]
set editMenu [java::new java.awt.Menu "Edit"]
set viewMenu [java::new java.awt.Menu "View"]
set stupMenu [java::new java.awt.Menu "Setup"]
set helpMenu [java::new java.awt.Menu "Help"]

 Download White Paper:
Competitive Positioning for the

New Millennium.
http://www.comit.com

set fileMenuOpen [java::new java.awt.MenuItem "Open..."]
$fileMenu add $fileMenuOpen

set fileMenuNew [java::new java.awt.MenuItem "New..."]
$fileMenu add $fileMenuNew

set fileMenuSave [java::new java.awt.MenuItem "Save"]
$fileMenu add $fileMenuSave

set fileMenuSaveAs [java::new java.awt.MenuItem "Save
As..."]
$fileMenu add $fileMenuSaveAs

$menuBar add $fileMenu
$menuBar add $editMenu
$menuBar add $viewMenu
$menuBar add $stupMenu
$menuBar add $helpMenu

$frame pack
$frame toFront
$frame setLocation 100 100
$frame setSize 400 100

At Comit, we understand the time constraint to develop and
market the product. Our knowledge in Jacl and Java helps
customers to develop platform independent applications,
quickly.

 We build chips, boards, software and systems for you.

