

Volume 2, Number 1 MARCH 1999

Designing with Global Clock Buffers in FPGAs
Jaishankar Iyer

The newsletter of Comit Systems, Inc.

esignesign dvantagedvantage
TMTM

FPGAs have resources called Global Clock Buffers
and the number of buffers varies from one FPGA
technology to another. Global Clock Buffers may be
used for high fanout signals like clock, clock enable
preset logic and clear logic. Since Global Clock
Buffers are dedicated resources in the FPGA
architecture, it makes sense to utilize them fully.

In case we do not specifically assign Global Clock
Buffers in our design, the software tools may
automatically attach a Global Clock Buffer to any in-
put port signal, which directly drives a clock pin.
The software may limit the maximum number of
Global Clock Buffers, which can be inserted into
the synthesized netlist file, based on the architec-
tural capabilities of the device.

In addition, some FPGA tools may allow us to assign
Global Clock Buffers to high fanout signals in the
constraints file which is passed on as input to the
Place & Route tools. This is another way to achieve
the same result.

There are two other ways that help you better control
the assignment of Global Clock Buffers to the high
fanout signals, as explained below :

 1. By using attribue clock_buffer
 2. By Instantiation

Using Attribute clock_buffer
It is possible to insert a Global Clock Buffer on any
specified input port signal, regardless of whether it is
a clock signal or not. Use the “clock_buffer” attribute
as shown below in Example 1, to access this feature.
This Global Clock Buffer replaces the input buffer and
thus uses a dedicated global buffer pad. This attrib-
ute is attached to top-level port signals.

In the example below, a Global Clock Buffer is
inserted on the CLR line.

Example 1

library ieee;
use ieee.std_logic_1164.all;
entity dff is
 port (data : in STD_LOGIC;

 clk : in STD_LOGIC;
 clr : in STD_LOGIC;
 q : out STD_LOGIC) ;
 attribute clock_buffer : boolean;
 attribute clock_buffer of clr : signal is
true;
end dff ;
architecture test of dff is
begin -- test
 process (clk,clr)
 begin
 if clr = '1' then
 q <='0';
 elsif clk'event and clk = '1' then
 q <= data;
 end if;
 end process;
end test ;

Instantiation
Global Clock Buffers may also be instantiated. This
method is best suited to drive a Global Clock Buffer
with an internally generated signal or to control the
specific type of global buffer used. If, for instance, in
an ORCA Series 3 design, we wish to specify the use
of CLKCNTLB (bottom) clock controller, then we need
to instantiate it as shown in Example 2 below.

Example 2

library ieee;
use ieee.std_logic_1164.all;
entity clkcnt is
 port(data :in STD_LOGIC;
 ck_in :in STD_LOGIC;
 ck_off :in STD_LOGIC;
 q :out STD_LOGIC);
end clkcnt;
architecture test of clkcnt is
 signal clock :STD_LOGIC;
 component CLKCNTLB
 port(CLKIN: in STD_LOGIC;
 SHUTOFF: in STD_LOGIC;
 CLKOUT: out STD_LOGIC);
 end component;
begin
-- Component Instantiation
CLK_CNTL_BOTTOM: CLKCNTLB port map (CLKIN=>ck_in,
 SHUTOFF=>ck_off, CLKOUT=>clock);

process(clock)
begin
 if(clock’event and clock=‘1’) then
 out <= data;
 end if;
end process;
End test;

The VHDL code in the above examples

 Comit now designs AMBA
compliant interfaces for on-

chip digital peripherals!

Design Advantage

Comit Systems, Inc.
3375 Scott Blvd. Suite 330
Santa Clara, CA 95054
Phone : (408)-988-2224

The newsletter of:

S Y S T E M S

COMIT
®

esignesign dvantagedvantage

TMTM

 Editor : Jaishankar Iyer
We welcome your comments and
suggestions. Please email us at

jiyer@comit.com

can be compiled and synthesized.
Overcoming inconsistencies

in SDF backannotation
Rohan Hubli

During backannotation using SDF files, we may come
across situations where the same cell name is
referenced differently in the HDL netlist file and the
SDF file. This may happen due to differences in
hierarchical separators, register names, net names
etc.

 eg : U31dffrdx1_reg_1 -- VHDL/Verilog cell name
 U31dffrdx1reg_1 -- SDF cell name

The effect of this is an unsuccessful post-synthesis
gate level simulation since the simulator cannot find
the reference for the cell being addressed by the
design.

We can, of course, write a shell script to identify
differences in cell names in the netlist and SDF files
and generate files acceptable to the simulator. This
method is tedious as it requires manual
intervention to identify differences in the files and fix
them.

 Download White Paper:
Competitive Positioning for the

New Millennium.
http://www.comit.com

As good design practice, we can execute a set of
variables before synthesis with Synopsys® Design
CompilerTM, which will nullify the inconsistencies in the
netlist and SDF file.

For VHDL designs, the Synopsys® synthesis variable
set will look like this :

 bus_naming_style="%s<%d>"
 default_name-rules = "sge_vhdl"
 change_names -hierarchy
 vhdlout_write_components = FALSE
 vhdlout_write_top_configuration = TRUE
 vhdlout_use_packages = { IEEE.std_logic_144 }

For Verilog designs, the Synopsys® synthesis vari-
able set will look like this :

 bus_naming_style="%s<%d>"
 define_name_rules my_rules -allowed "A-Z _ 1-10"
 -first_restricted "A-Z"
 -restricted "!@#$%^&*()"
 -last_resticted "\\-"
 change_names -rules my_rules -hierarchy.

This technique ensures a smoother flow during

Synopsys is a registered mark of Synopsys, Inc.
Design Compiler is a trademark of Synopsys, Inc.

 We build chips, boards, software and systems for you.

