
 

Comit-TX, is an innovative 
Verilog Test Bench Extractor 
that speeds up the design proc-
ess by saving time in module 
level verification. For a limited 
time, it is  available free of 
charge through Comit’s website. 
 
With increasingly large and com-
plex designs, different modules 
tend to be represented at differ-
ent levels of abstraction in the 
initial phases of the design. They 
would later be replaced by RTL 
or structural representation. 

Comit-TX extracts a self-
checking Verilog testbench of 
any module inside a design that 
has a system level testbench. 
Comit-TX, with the extracted 
testbench, enables the module's 
replacement to be verified in a 
stand-alone basis in an environ-
ment identical to its final working 
environment, without having to 
simulate the entire system.  
 
During simulation, the extracted 
testbench applies vectors  on the  
input  signals  of  the module 
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Do you write models for components 
which need timing information and want 
a clean, consistent way to do it? Here is 
a simple and easy method to model the 
timing specifications. 
 
Let us say that the timings to be modeled 
are in the form of a table given below. Of 
course, any number of timings are possi-
ble. We model only two here, for the pur-
pose of illustration. 
 
-------------------------------------- 
Parameter  Name          Min  Typ  Max 
-------------------------------------- 
t_AVWH    Address setup  2.0  3.0  4.0 
t_WHAX    Address hold   1.0  1.5  2.0 
-------------------------------------- 

The first step is to declare a type 
string_ptr which is the equivalent of a 
char * in C. This is a pointer that 
points to a string, thereby allowing the 
use of strings that are not constrained to 
a specific array length. 
 
Secondly, we declare a timing_value_t 
type which is an enumerated type that 
lists out the three type of timings we 
have to model – min, typ and max. 
 
A type called time_array_t is defined 
as an array of time in such a way that 
we can access the elements of this array 
with an index of type timing_value_t.  
 
After this we declare a record that stores 
one line of the timing table. We need a 
fixed length array that stores the six 
characters of the parameter string, a 
string pointer that points to the name 
string, and a time array capable of hold-
ing the three values for that parameter. 
 
Lastly, we need a table that stores ex-
actly two such records. This is declared 
as an array of timing_record_t. The 
actual code would look like the segment 
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Even then, the modules continue 
to be modified for a variety of rea-
sons, including area or timing op-
timizations. While modifying the 
different modules and fitting them 
back into the full design, it is criti-
cal to ensure that the module's 
functionality and its interface with 
other modules remain unchanged.  
 
Verifying the different modules in 
a design  by   simulating   the   
entire system is time consuming.  

monitors the output signals for ex-
pected behavior.  As the test-
bench is self-checking, the verifi-
cation is automatically done dur-
ing simulation, and a report is pro-
duced indicating any mismatch 
between the expected and ob-
served behavior of the module.  
 
Save time. Maintain Design Integ-
rity. Verify your designs with 
Comit-TX. Download FREE for a 
limited time from www.comit.
com  
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below: 
----------------------------------- 
-- SAMPLE TIMING MODEL CODE 
----------------------------------- 
type string_ptr is access string; 
type timing_value_t is (minumum, 
                        typical,  
                        maximum); 
type time_array_t is  
   array(timing_value_t) of time; 
type timing_record_t is record 
  parameter    : string(1 to 6); 
  name         : string_ptr; 
  val_table    : time_array_t; 
end record; 
type timing_table_t is  
  array (0 to 7) of  
  timing_record_t; 
 
shared variable tim_table :  
  timing_table_t := ( 
  ------------------------------- 
  Parameter     
  Name 
  Min        Typ       Max 
  ------------------------------- 
  "t_AVWH",  
  new string'("Address setup"),  
  (2000 ps, 3000 ps, 4000 ps)), 
    "t_WHAX",  
  new string'("Address hold"), 
  (1000 ps, 1500 ps, 2000 ps)), 

  --------------------------------
- 
); 

The new operator is used to create a 
string which is exactly the same as 
the name. This table needs to be a 
shared variable, because VHDL 93 
will not allow access types (pointers) 
as constants and, besides, it will 
probably be needed by several proc-
esses. Care has to be taken that the 
table is not inadvertently modified, 
since there is nothing preventing that 
from happening. Finally, we alias the 
timings in the following way: 
 
alias t_AVWH : time is  
tim_table(0).val_table(typical); 
alias t_WHAX : time is  
tim_table(1).val_table(typical); 

 
In place of the "typical" we could 
have "maximum" or, for that matter, 
a constant of type timing_value_t 
initialized to one of minimum, typi-
cal or maximum. 

 
 
The method described above has 
other advantages besides code 
readability, easy maintenance etc. 
One of them is simple timing error 
reporting: 
procedure report_violation 
 (index : in integer) is   
begin 
 report (("Violation :" &   
  tim_table(index).name.all)   
  & (", " & tim_table   
  (index).parameter)) 
 severity warning; 
end report_violation; 
A coding style such as this lends 
itself to effective reuse, and even a 
library of timing check func t ions 
can be built around it. 


