

Comit-TX, is an innovative
Verilog Test Bench Extractor
that speeds up the design proc-
ess by saving time in module
level verification. For a limited
time, it is available free of
charge through Comit’s website.

With increasingly large and com-
plex designs, different modules
tend to be represented at differ-
ent levels of abstraction in the
initial phases of the design. They
would later be replaced by RTL
or structural representation.

Comit-TX extracts a self-
checking Verilog testbench of
any module inside a design that
has a system level testbench.
Comit-TX, with the extracted
testbench, enables the module's
replacement to be verified in a
stand-alone basis in an environ-
ment identical to its final working
environment, without having to
simulate the entire system.

During simulation, the extracted
testbench applies vectors on the
input signals of the module

Volume 1, Number 3 November 1998

Save Time, Maintain Design Integrity with
 Innovative Test-Bench Extractor

Venkat Talapaneni

The newsletter of Comit Systems, Inc.

esignesign dvantagedvantage
TMTM

Clean, Consistent Timing
Modeling In VHDL 93

Vijay Nebhrajani

Module
Under
Test

M2
M1

M3

MonitorVerification
 Stimuli

 Generator

Do you write models for components
which need timing information and want
a clean, consistent way to do it? Here is
a simple and easy method to model the
timing specifications.

Let us say that the timings to be modeled
are in the form of a table given below. Of
course, any number of timings are possi-
ble. We model only two here, for the pur-
pose of illustration.

Parameter Name Min Typ Max

t_AVWH Address setup 2.0 3.0 4.0
t_WHAX Address hold 1.0 1.5 2.0

The first step is to declare a type
string_ptr which is the equivalent of a
char * in C. This is a pointer that
points to a string, thereby allowing the
use of strings that are not constrained to
a specific array length.

Secondly, we declare a timing_value_t
type which is an enumerated type that
lists out the three type of timings we
have to model – min, typ and max.

A type called time_array_t is defined
as an array of time in such a way that
we can access the elements of this array
with an index of type timing_value_t.

After this we declare a record that stores
one line of the timing table. We need a
fixed length array that stores the six
characters of the parameter string, a
string pointer that points to the name
string, and a time array capable of hold-
ing the three values for that parameter.

Lastly, we need a table that stores ex-
actly two such records. This is declared
as an array of timing_record_t. The
actual code would look like the segment

Monitor
Verification

 Stimuli
 Generator

Module
Under
Test

Comit-TX

Limited Time

FREE!

Download Offer:

(See text)

Even then, the modules continue
to be modified for a variety of rea-
sons, including area or timing op-
timizations. While modifying the
different modules and fitting them
back into the full design, it is criti-
cal to ensure that the module's
functionality and its interface with
other modules remain unchanged.

Verifying the different modules in
a design by simulating the
entire system is time consuming.

monitors the output signals for ex-
pected behavior. As the test-
bench is self-checking, the verifi-
cation is automatically done dur-
ing simulation, and a report is pro-
duced indicating any mismatch
between the expected and ob-
served behavior of the module.

Save time. Maintain Design Integ-
rity. Verify your designs with
Comit-TX. Download FREE for a
limited time from www.comit.
com

Design Advantage

Comit Systems, Inc.
3375 Scott Blvd. Suite 330
Santa Clara, CA 95054

The newsletter of:

 We build chips, boards, software and systems for you.

S Y S T E M S

COMIT
®

esignesign dvantagedvantage

TMTM

 Download White Paper on
 Engineering Outsourcing:
 http://www.comit.com

 Editor : Rajesh Bawankule.
We welcome your comments and
suggestions. Please email us at

rajesh@comit.com

below:

-- SAMPLE TIMING MODEL CODE

type string_ptr is access string;
type timing_value_t is (minumum,
 typical,
 maximum);
type time_array_t is
 array(timing_value_t) of time;
type timing_record_t is record
 parameter : string(1 to 6);
 name : string_ptr;
 val_table : time_array_t;
end record;
type timing_table_t is
 array (0 to 7) of
 timing_record_t;

shared variable tim_table :
 timing_table_t := (

 Parameter
 Name
 Min Typ Max

 "t_AVWH",
 new string'("Address setup"),
 (2000 ps, 3000 ps, 4000 ps)),
 "t_WHAX",
 new string'("Address hold"),
 (1000 ps, 1500 ps, 2000 ps)),

-
);

The new operator is used to create a
string which is exactly the same as
the name. This table needs to be a
shared variable, because VHDL 93
will not allow access types (pointers)
as constants and, besides, it will
probably be needed by several proc-
esses. Care has to be taken that the
table is not inadvertently modified,
since there is nothing preventing that
from happening. Finally, we alias the
timings in the following way:

alias t_AVWH : time is
tim_table(0).val_table(typical);
alias t_WHAX : time is
tim_table(1).val_table(typical);

In place of the "typical" we could
have "maximum" or, for that matter,
a constant of type timing_value_t
initialized to one of minimum, typi-
cal or maximum.

The method described above has
other advantages besides code
readability, easy maintenance etc.
One of them is simple timing error
reporting:
procedure report_violation
 (index : in integer) is
begin
 report (("Violation :" &
 tim_table(index).name.all)
 & (", " & tim_table
 (index).parameter))
 severity warning;
end report_violation;
A coding style such as this lends
itself to effective reuse, and even a
library of timing check func t ions
can be built around it.

